
Computational Statistics and Data Analysis 157 (2021) 107157

a

b

c

w
m
d
e
h
l

w
t
a
o
w
v
c
d

h
0

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Regression analysis of censored datawith nonignorable
missing covariates and application to Alzheimer Disease
Mingyue Du a, Huiqiong Li b,∗, Jianguo Sun c

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
Department of Statistics, Yunnan University, Kunming, 650091, China
Department of Statistics, University of Missouri, Columbia, MO, 65211, USA

a r t i c l e i n f o

Article history:
Received 14 February 2020
Received in revised form 15 October 2020
Accepted 9 December 2020
Available online 27 December 2020

Keywords:
EM algorithm
Interval-censored data
Missing covariate
Semiparametric transformation models

a b s t r a c t

In this paper, we discuss regression analysis of censored failure time data when there
exist missing covariates and more specifically, we will consider interval-censored data, a
general form of censored data, and the nonignorable missing. Although many methods
have been proposed in the literature for censored data with missing covariates, they
only apply to limited situations and it does not seem to exist an established procedure
for the situation discussed here. For the analysis, we employ the semiparametric linear
transformation model and develop a two-step estimation procedure. In addition, the
asymptotic properties of the resulting estimators are established and a Poisson variable-
based EM algorithm is provided for the implementation of the proposed estimation
procedure. Finally the proposed approach is applied to an Alzheimer Disease study that
motivated this investigation.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we discuss regression analysis of censored failure time data when there exist missing covariates. It is
ell-known that in general, such analysis highly depends on the censoring mechanism and it is relatively easy if one faces
issing completely at random or missing at random (Little and Rubin, 2002). However, sometimes one may face or has to
eal with nonignorable missing, meaning that the missing may depend on both the observed and missing values (Lipsitz
t al., 1999), and the analysis of such data is challenging or difficult since it usually requires some assumptions that are
ard to verify. In the following, we will discuss regression analysis of interval-censored data under the semiparametric
inear transformation model with nonignorable missing covariates.

This work was motivated by an Alzheimer’s Disease study, the Alzheimer’s Disease Neuroimaging Initiative (ADNI),
hich is a longitudinal multi-centre study designed to develop clinical, imaging, genetic, and biochemical biomarkers for
he early detection and tracking of the Alzheimer’s disease (AD). It begun in 2004 and has been recruited the participants
cross North America who agreed to complete a variety of imaging and clinical assessments. Among others, one main
bjective of the study is to detect AD at the earliest possible stage and identify ways to track the diseases progression
ith biomarkers. During the study, as most of longitudinal or follow-up studies, some participants miss the scheduled
isits, drop out the study and/or fail to provide covariate information. Also as most of follow-up studies, only interval-
ensored observations are available for the occurrence times of the events of interest such as the AD conversion. More
etails will be given below.
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In addition to the study described above, missing data occur in many other areas such as longitudinal follow-up studies
nd sample survey and also in many forms in terms of missing parts and missing mechanism (Graham, 2012; Lipsitz et al.,
999; Little and Rubin, 2002; Molenberghs et al., 2015). In longitudinal studies, for example, it is common that study
ubjects miss some scheduled visits and/or drop out the study before the end of the study and thus give some missing
alues. It is apparent that such missing can easily be nonignorable if the missing visits or drop-out is related to the event
r variable under investigation such that the event may be some status of a breast cancer patient while the drop-out is
ue to death. In sample survey, it is also common to have missing values on both response variables and covariates with
he missingness being to depend on missing values and thus nonignorable, and among others, Little and Rubin (2002)
escribed many such nonignorable examples. In the case of interval-censored data, a general example of nonignorable
issing covariates occurs when there exist some internal covariates or correlated longitudinal covariates (Kalbfleisch and
rentice, 2002; Wullfsohn and Tsiatis, 1997).
As mentioned above, many methods have been proposed in the literature for regression analysis of censored failure

ime data with missing covariates (Hu et al., 2015; Qi et al., 2005; Luo et al., 2009; Ning et al., 2018; Wang and Chen, 2001;
u et al., 2009). However, most of them apply only to right-censored data, the censored data with missing completely at
andom or missing at random, or the data arising from a specific regression model such as the proportional hazards model.
t is well-known that when the missing is nonignorable, the application of the methods developed under the simpler
issing mechanism could yield seriously biased estimation, and the proportional hazards model may be too restrictive
r not fit censored data well sometimes. Limited research also exists for right-censored data with nonignorable missing
ovariates. For example, Cook et al. (2011) gave a maximum likelihood estimation approach by utilizing supplementary
nformation under the proportional hazards model. In the following, we will consider interval-censored data, a more
eneral form of censored data that includes right-censored data as a special case (Finkelstein, 1986; Sun, 2006), under
he semiparametric linear transformation model, a class of flexible models that includes many commonly used models as
pecial cases (Chen et al., 2002; Zeng et al., 2016; Zhang and Zhao, 2013).
The remainder of this paper is organized as follows. In Section 2, we will first describe some notation and the models

nd some assumptions that will be used throughout the paper. A two-step estimation procedure is then proposed
n Section 3. In the first step, an estimating equation approach is given to estimate the parameter involved in the
issing mechanism and then an approximated maximum likelihood estimation procedure is developed for estimation
f regression parameters along with others. Furthermore the asymptotic properties of the proposed estimators are
stablished. In Section 4, for the implementation of the proposed estimation procedure, a novel EM algorithm is developed
ith the use of Poisson variables in the data augmentation part. Section 5 presents some results obtained from a simulation
tudy conducted for the assessment of the finite sample properties of the proposed method, and they suggest that the
pproach works well for practical situations. In Section 6, we apply the proposed approach to the AD study described
bove and Section 7 contains some discussion and concluding remarks.

. Models, assumptions and the likelihood function

Consider a failure time study that involves n independent subjects. For subject i, let Ti denote the failure time of interest
and suppose that there exists a p-dimensional vector of covariates denoted by (Xi, Zi)′, where Xi denotes the covariates
that may suffer missing and Zi the covariates that can always be observed, i = 1, . . . , n. In the following, we will assume
that given the covariates Xi and Zi, the cumulative hazard function of Ti has the form

ΛT (t|Xi, Zi) = G
{
Λ(t) exp(Xi

Tβ1 + ZiTβ2)
}
. (1)

In the above, G is a known increasing function, Λ(t) denotes an unknown increasing baseline cumulative hazard function,
and β = (β1, β2)′ is a p-dimensional vector of regression parameters. Suppose that the main goal is to estimate β .

It is easy to see that the class of transformation models described above is flexible and includes many commonly used
models as special cases (Chen et al., 2002; Zhang and Zhao, 2013). For example, one can obtain the proportional hazards
model by letting G(x) = x and it gives the proportional odds model when G(x) = log(1+ x). Also it is not difficult to show
that model (1) can be rewritten as a linear transformation model

logΛ(t) = −Xi
Tβ1 − ZiTβ2 + ϵ ,

and given Xi and Zi, the survival function of Ti has the form

S(t|Xi, Zi) = exp
{
−G

[
Λ(t) exp(Xi

Tβ1 + ZiTβ2)
]}
,

where ϵ is an error term with the distribution function 1 − exp[−G{exp(x)}].
To describe the observed interval-censored data, suppose that for subject i, there exist two observation times denoted

by Ui and Vi with Ui < Vi, and define the indicator functions δ1i = I(Ti ⩽ Ui), δ2i = I(Ui < Ti ⩽ Vi), and δ3i = 1 − δ1i − δ2i.
That is, one only observes whether the failure event of interest for subject i occurs before Ui, within (Ui, Vi], or after Vi.
Also define the indicator function ri = 1 if Xi is observed and ri = 0 otherwise and assume that the missing probability
P(ri = 1|Xi, Zi) = π (Xi, Zi) = π (α; Xi, Zi) is known up a vector of parameters α. That is, the missing mechanism is
nonignorable or the missing not at random (MNAR). In the following, it will be also assumed that given the X and Z , T is
i i i
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independent of Ui and Vi, meaning that we have independent or non-informative censoring, and that given the covariates,
the covariate missingness is independent of the observation on Ti.

Define C = {i : ri = 1} and C̄ = {i : ri = 0}. Note that for the subject in C, the density function of a general observation
U, V , δ1, δ2, δ3, Z, rX, r} has the form

f (U, V , δ1, δ2, δ3, Z, rX, r) = f (U, V , δ1, δ2, δ3, Z, X, r = 1)
= f (X, Z) f (r = 1|X, Z) f (U, V , δ1, δ2, δ3|X, Z) ,

hile for the subject in C̄, the corresponding density function takes the form

f (U, V , δ1, δ2, δ3, Z, rX, r) = f (U, V , δ1, δ2, δ3, Z, r = 0)

=

∫
f (X, Z) f (r = 0|X, Z) f (U, V , δ1, δ2, δ3|X, Z) dX .

t follows that based on the observed data O = {Oi = (Ui, Vi, δi1, δi2, δi3, Zi, riXi, ri) , i = 1, . . . , n }, the likelihood function
an be written as

L(β1, β2,Λ, α|O) =

∏
i∈C

{ (
1 − exp

{
−G

[
Λ(Ui) exp(Xi

Tβ1 + ZiTβ2)
]})δi1

(
exp

{
−G

[
Λ(Ui) exp(Xi

Tβ1 + ZiTβ2)
]}

− exp
{
−G

[
Λ(Vi) exp(Xi

Tβ1 + ZiTβ2)
]})δi2(

exp
{
−G

[
Λ(Vi) exp(Xi

Tβ1 + ZiTβ2)
]})δi3 f (Xi|Zi)f (Zi)f (ri = 1|Xi, Zi)

}
×

∏
i∈C̄

{ ∫ (
1 − exp

{
−G

[
Λ(Ui) exp(Xi

Tβ1 + ZiTβ2)
]})δi1

(
exp

{
−G

[
Λ(Ui) exp(Xi

Tβ1 + ZiTβ2)
]}

− exp
{
−G

[
Λ(Vi) exp(Xi

Tβ1 + ZiTβ2)
]})δi2(

exp
{
−G

[
Λ(Vi) exp(Xi

Tβ1 + ZiTβ2)
]})δi3 f (Xi|Zi)f (Zi)f (ri = 0|Xi, Zi)dXi

}
.

Let (Li, Ri] denote the smallest interval that brackets Ti, or define Li = 0 and Ri = Ui if δi1 = 1, Li = Ui and Ri = Vi if
δi2 = 1, and Li = Vi, Ri = ∞ if δi3 = 1. Then the likelihood function above can be rewritten as

L(β1, β2,Λ, α|O) =

∏
i∈C

{(
exp

{
−G

[
Λ(Li) exp(Xi

Tβ1 + ZiTβ2)
]}

− exp
{
−G

[
Λ(Ri) exp(Xi

Tβ1 + ZiTβ2)
]} )

f (Xi|Zi)f (Zi)f (ri = 1|Xi, Zi)
}

×

∏
i∈C̄

{ ∫ (
exp

{
−G

[
Λ(Li) exp(Xi

Tβ1 + ZiTβ2)
]}

− exp
{
−G

[
Λ(Ri) exp(Xi

Tβ1 + ZiTβ2)
]} )

f (Xi|Zi)f (Zi)f (ri = 0|Xi, Zi)dxi

}
.

In the next section, we will discuss estimation of regression parameters as well as others.

3. Estimation procedures

Now we discuss estimation of regression parameters β1 and β2 as well as Λ and α. For this, we will first consider
estimation of the parameter α in the missing probability π (α; Xi, Zi) and present an estimating equation approach. Then
an approximated maximum likelihood estimator is proposed for the others.

As above, let f (X |Z) denote the probability density function of the covariate X given the covariate Z . For estimation of
α, note that if f (X |Z) was known, it would be natural to use the maximum likelihood estimator (Kim and Shao, 2013).
Of course, this is not true and to deal with this, we assume that the ri’s are independently generated from a Bernoulli
distribution with probability πi(α) = π (α; Xi, Zi). If the Xi’s were completely observed, the likelihood function of α would
be

L(α) =

n∏
i=1

{π (α; Xi, Zi)}γi{1 − π (α; Xi, Zi)}1−ri ,

and one could obtain the maximum likelihood estimator of α by solving the score equation

S(α) =
∂ log L(α)
∂α

=

n∑
s(α; ri, Xi, Zi) =

n∑ ri − π (α; X, Z)
π (α; X, Z){1 − π (α; X, Z)}

∂π (α; X, Z)
∂α

= 0 .

i=1 i=1

3
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However, because some of Xi are missing and thus the score equation above is not applicable. Corresponding to this, we
an consider maximizing the observed likelihood function

Lobs(α) =

n∏
i=1

{π (α; Xi, Zi)}γi [
∫

{1 − π (α; Xi, Zi)}f (Xi|Zi)dXi]
1−ri ,

nd the resulting maximum likelihood estimator of α can be obtained by solving the observed score equation

Sobs(α) = log Lobs(α)/∂α = 0.

n the other hand, finding the solution to the observed score equation above is computationally challenging because it
nvolves the integration with unknown parameters. Thus we propose to find the maximum likelihood estimator of α by
olving the following mean score equation

S̄(α) = n−1
n∑

i=1

E{s(α; ri, Xi, Zi)|ri, Xobs,i, Zi}

= n−1
n∑

i=1

[ris(α; ri, Xi, Zi) + (1 − ri)E0{s(α; ri, Xi, Zi)|Zi = zi, ri = 0}] = 0 (2)

which is equivalent to Sobs(α) = 0 (Louis, 1982).
To solve the mean score equation S̄(α) = 0, we need to determine the conditional distribution f (X |Z, r = 0) since we

need to compute the conditional expectation of the score function E0(·) in (2). For this, note that

f (X |Z, r = 0) = f (X |Z, r = 1)
O(α; X, Z)

E{O(α; X, Z)|Z, r = 1}

ased on the Bayes formula, where

O(α; X, Z) =
f (r = 0|X, Z)
f (r = 1|X, Z)

= π−1(α; X, Z) − 1 .

t thus follows that

E0{s(α; ri, Xi, Zi)|Zi = zi, ri = 0} =

∫
s(α; r, Xi, Z)O(α; Xi, Z)f (r = 1|Xi, Z)dXi∫

O(α; Xi, Z)f (r = 1|Xi, Z)dXi

≜
Fs(α; Zi, ri)
D(α; Zi)

.

By using the kernel smoothing, we can estimate Fs(α; Zi, ri) and D(α; Zi) by

F̂s(α; Z, r) = (nhd)−1
n∑

j=1

rjKh(Zj − Z)O(α; Xj, Z)s(α; r, Xj, Z) ,

and

D̂(α; Z) = (nhd)−1
n∑

j=1

rjKh(Zj − Z)O(α; Xj, Z) ,

respectively, where d denotes the dimension of Z , K : Rd
→ R is a kernel function, Kh(Z) = K (Z/h), and h is an

ppropriate bandwidth that satisfies certain regularity conditions. Thus the mean score equation (2) can be approximated
y (Morikawa et al., 2017; Zhao et al., 2017)

Ŝ(α) = n−1
n∑

i=1

{
ris(α; ri, Xi, Zi) + (1 − ri)

F̂s(α; Zi, ri)

D̂(α; Zi)

}
= 0 . (3)

t is worth noting that the estimation procedure for α above is valid for any parametric model and without the need of
pecifying a parametric distribution on the variable X .
Let α̂ denote the estimator of α given by the solution to Eq. (3). Then it is natural to estimate β1, β2 and Λ by

aximizing the estimated or approximate likelihood function L(β1, β2,Λ, α̂|O). Before this, note that to simplify the
aximization, one can convert the class of transformation model given in (1) into the proportional hazards frailty model
y using the Laplace transformation. Specifically, let ξ be a random variable whose density f (ξ ) is the inverse Laplace
ransformation of exp{−G(t)} or given by

exp{−G(t)} =

∫
∞

exp(−tξ )f (ξ )dξ

0

4
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with the support [0,∞). By letting f (ξi) be the gamma density function with mean 1 and variance γ , we have G(x) =

log(1 + γ x)/γ , the logarithmic transformation function family. Then by omitting f (Z) and f (r = 1|X, Z), the likelihood
unction can be rewritten as

L(β1, β2,Λ, α̂|O) =

∏
i∈C

{( ∫
ξi

[
exp

{
−ξiΛ(Li) exp(Xi

Tβ1 + ZiTβ2)
}

− exp
{
−ξiΛ(Ri) exp(Xi

Tβ1 + ZiTβ2)
} ]

f (ξi)dξi

)
f (Xi|Zi)

}
×

∏
i∈C̄

{ ∫ [ ∫
ξi

(
exp

{
−ξiΛ(Li) exp(Xi

Tβ1 + ZiTβ2)
}

− exp
{
−ξiΛ(Ri) exp(Xi

Tβ1 + ZiTβ2)
} )

f (ξi)dξi

]
f (Xi|Zi)f (ri = 0|Xi, Zi)dXi

}
.

For estimation of θ = (β1, β2,Λ), we will take the nonparametric approach that treats Λ as a step function at all
different observation times and estimate it by the value, denoted by θ̂n = (β̂n, Λ̂n), that maximizes the approximated
likelihood function L(β1, β2,Λ, α̂|O). Let θ0 = (β0,Λ0) denote the true value of θ and define the distance between
θ1 = (β1

1, β2
1,Λ1) and θ2 = (β1

2, β2
2,Λ2) as

d(θ1, θ2) = { ∥β1
1
− β1

2
∥
2
+ ∥β2

1
− β2

2
∥
2
+ ∥Λ1

−Λ2
∥
2
2 }

1/2 ,

where ∥v∥ denotes the Euclidean norm of a vector v and ∥Λ1
−Λ2

∥
2
2 =

∫
[{Λ1(u)−Λ2(u)}2 + {Λ1(v)−Λ2(v)}2]df (u, v).

Then in the Appendix A, we will show that under some regularity conditions and as n → ∞, d(θ̂n, θ0) → 0 almost surely
and

√
n(β̂n − β0) → N(0,Σ)

n distribution with Σ given in Appendix A. That is, θ̂n is consistent and β̂n asymptotically follows the normal distribution.
For inference about β , it is apparent that one needs to estimate Σ and one common approach would be to employ the

ouis’ Formula, proposed by Louis (1982) for covariance estimation when an EM algorithm is used, or the profile likelihood
pproach. However, both methods would require the determination of some quantities that are analytically complicated.
orresponding to this and by following Wen and Chen (2011) and others, we propose to employ the nonparametric
ootstrap method (Efron, 1981; Su and Wang, 2016). Specifically, let Q be an integer and for each 1 ≤ q ≤ Q , draw a
ew data set, denoted by O(q), of the sample size n with replacement from the original observed data {Oi; i = 1, . . . , n }.
et β̂q

n denote the estimator of β defined above based on the bootstrap samples O(q), q = 1, . . . ,Q . respectively. Then one
an estimate the covariance matrix of β̂n by using the sample covariance matrix of the β̂ (q)

n ’s and the numerical results
elow suggest that it seems to work well.

. A Poisson variable-based EM algorithm

In this section, we present an EM algorithm for the determination of the proposed estimator θ̂n. Let 0 = t0 < t1 <
· · < tm denote all different, ordered time points of the Li’s and finite Ri’s and λk the jump of Λ at tk with λ0 = 0. Then
he approximated likelihood function L(β1, β2,Λ, α̂|O) can be rewritten as

L(β1, β2,Λ, α̂|O) =

∏
i∈C

{ ⎛⎝∫
ξi

exp

⎧⎨⎩−ξi
∑
tk⩽Li

λk exp(Xi
Tβ1 + ZiTβ2)

⎫⎬⎭
×

⎡⎣1 − exp{−ξi
∑

Li<tk⩽Ri

λk exp(Xi
Tβ1 + ZiTβ2)}

⎤⎦I(Ri<∞)

f (ξi)dξi

⎞⎟⎠ f (Xi|Zi)
}

×

∏
i∈C̄

{ ∫ ⎡⎣∫
ξi

exp

⎧⎨⎩−ξi
∑
tk⩽Li

λk exp(Xi
Tβ1 + ZiTβ2)

⎫⎬⎭
×

⎡⎣1 − exp{−ξi
∑

Li<tk⩽Ri

λk exp(Xi
Tβ1 + ZiTβ2)}

⎤⎦I(Ri<∞)

f (ξi)dξi

⎤⎥⎦
× f (Xi|Zi)f (ri = 0|Xi, Zi)dXi

}
.

5
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To augment the observed data, by following Wang et al. (2016) and Zeng et al. (2016), given ξi, let {Wik; i = 1, . . . , n;
= 1, . . . ,m } be independent Poisson random variables with the means ξiλk exp(Xi

Tβ1 + ZiTβ2). Then L(β1, β2,Λ, α̂|O)
can be written as

L(β1, β2,Λ, α̂|O) =

∏
i∈C

⎡⎢⎣∫
ξi

⎧⎨⎩∏
tk⩽Li

P(Wik = 0|ξi)

⎫⎬⎭
⎧⎨⎩1 − P(

∑
Li<tk⩽Ri

Wik = 0|ξi)

⎫⎬⎭
I(Ri<∞)

f (ξi)dξi

⎤⎥⎦
× f (Xi|Zi)

∏
i∈C̄

{ ∫ ⎡⎢⎣∫
ξi

⎧⎨⎩∏
tk⩽Li

P(Wik = 0|ξi)

⎫⎬⎭
⎧⎨⎩1 − P(

∑
Li<tk⩽Ri

Wik = 0|ξi)

⎫⎬⎭
I(Ri<∞)

f (ξi)dξi

⎤⎥⎦
f (Xi|Zi)f (ri = 0|Xi, Zi)dXi

}
.

Furthermore, for the subjects in C̄ , define the latent variable Z̃ which takes the values on the observed Z1, . . . , Zn and
satisfies the equations P(Z̃ = Zj|Z = Zi) = wji, P(X = xs|Z = Zi, Z̃ = Zj) = P(X = xs|Z̃ = Zj) = psj, and
P(U, V , δ1, δ2, δ3|X, Z, Z̃) = P(U, V , δ1, δ2, δ3|X, Z). Then we have that P(X = xs|Z = Zi) =

∑n
j=1wjipsj for the subjects

in C̄ .
By treating the ξi’s, Wik’s, Xi and Z̃i’s as the missing data in the EM algorithm, we have the pseudo complete data log

likelihood as

lc(θ ) =

∑
i∈C

{ m∑
k=1

I(tk ⩽ Ri
∗)

[
Wik log{ξiλk exp(Xi

Tβ1 + ZiTβ2)} − ξiλk exp(Xi
Tβ1 + ZiTβ2)

− logWik!

]
+ log f (ξi) + log f (Xi|Zi)

}
+

∑
i∈C̄

{ m∑
k=1

I(tk ⩽ Ri
∗)

[
Wik log{ξiλk exp(Xi

Tβ1 + ZiTβ2)}

− ξiλk exp(Xi
Tβ1 + ZiTβ2) − logWik!

]
+ log f (ξi) + log f (Xi|Z̃i)

+ log f (Z̃i|Zi) + log(f (ri = 0|Xi, Zi))
}
,

where Ri
∗

= LiI(Ri = ∞) + RiI(Ri < ∞). Here we approximate log f (Xi|Zi) and log f (Xi|Z̃i) by

n∑
j=1

wji log P(Xi|Z = Zj) =

M∑
s=1

I(Xi = xs)
n∑

j=1

wji log psj ,

and

n∑
j=1

M∑
s=1

I(Xi = xs, Z̃i = Zj) log psj ,

respectively,

wji =
K (Zj − Zi)/a∑n
j=1 K (Zj − Zi)/a

,

where K (.) is a symmetric kernel function, a is a constant, and psj denotes the point mass of P(X |Zj) at xs with x1, . . . , xM
enoting the distinct observed values of X and the constraints

∑M
s=1 psj = 1 and psj ≥ 0, j = 1, . . . , n. When Z is discrete,

we can choose a small enough such that wji = I(j = i).
At the (d + 1)th iteration of the E-step and given θ (d) = (β (d)

1 , β
(d)
2 , λ

(d), p(d))′, we need to determine Q (θ |θ (d)) =

E[lc(θ )|O, θ (d)], which has the form

Q (θ |O, θ (d)) =

∑
i∈C

{ m∑
k=1

I(tk ⩽ Ri
∗)[E(Wik log{ξiλk exp(Xi

Tβ1 + ZiTβ2)})

T T

− λk exp(Xi β1 + Zi β2)E(ξi) − E(logWik!)]

6
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a

+ E(log f (ξi)) +

M∑
s=1

I(Xi = xs)
n∑

j=1

wji log psj

}

+

∑
i∈C̄

{ m∑
k=1

I(tk ⩽ Ri
∗)[E(Wik log{ξiλk exp(Xi

Tβ1 + ZiTβ2)})

− λk exp(ZiTβ2)E(ξi exp(Xi
Tβ1)) − E(logWik!)] + E(log f (ξi))

+ E

⎛⎝ n∑
j=1

M∑
s=1

I(Xi = xs, Z̃i = Zj) log psj

⎞⎠ + E

⎛⎝ n∑
j=1

I(Z̃i = Zj) logwji

⎞⎠
+ E(

M∑
s=1

I(Xi = xs)log(f (ri = 0|Xi = xs, Zi)))
}
.

For this, given the observed data for i ∈ C̄ , we can calculate the conditional expectations of I(Xi = xs) and I(Xi = xs, Z̃i = Zj)
as

q̂is =
f (Ui, Vi, δ1i, δ2i, δ3i|Xi = xs, Zi)(

∑n
j=1wjipsj)f (ri = 0|Xi = xs, Zi)∑M

s=1 f (Ui, Vi, δ1i, δ2i, δ3i|Xi = xs, Zi)(
∑n

j=1wjipsj)f (ri = 0|Xi = xs, Zi)
, (4)

and

ψ̂sji =
wjipsj∑n
j=1wjipsj

q̂is , (5)

respectively, s = 1, . . . ,M and j = 1, . . . , n.
Also for the subjects belonging to C , we need to determine

EX {E(Wik)} = I(Ri < ∞)λk exp(Xi
Tβ1 + ZiTβ2)

×

∫
ξi
ξi{exp(−ξiSi1) − exp(−ξiSi2)}[1 − exp(−ξi(Si2 − Si1))]−1f (ξi)dξi

exp{−G(Si1)} − exp{−G(Si2)}
I(Li < tk ≤ Ri) ,

EX {E(Wik)Xi} = I(Ri < ∞)λk exp(Xi
Tβ1 + ZiTβ2)Xi

×

∫
ξi
ξi{exp(−ξiSi1) − exp(−ξiSi2)}[1 − exp(−ξi(Si2 − Si1))]−1f (ξi)dξi

exp{−G(Si1)} − exp{−G(Si2)}
I(Li < tk ≤ Ri) ,

E(ξi) = I(Ri < ∞)
exp{−G(Si1)}G′(Si1) − exp{−G(Si2)}G′(Si2)

exp{−G(Si1)} − exp{−G(Si2)}
+ I(Ri = ∞)G′(Si1) ,

EX {E(ξi) exp(XT
i β1)} =

[
I(Ri < ∞)

exp{−G(Si1)}G′(Si1) − exp{−G(Si2)}G′(Si2)
exp{−G(Si1)} − exp{−G(Si2)}

+

I(Ri = ∞)G′(Si1)
]
exp(XT

i β1) ,

EX {E(ξi) exp(XT
i β1)Xi} =

[
I(Ri < ∞)

exp{−G(Si1)}G′(Si1) − exp{−G(Si2)}G′(Si2)
exp{−G(Si1)} − exp{−G(Si2)}

+

I(Ri = ∞)G′(Si1)
]
exp(XT

i β1)Xi ,

nd

EX {E(ξi) exp(XT
i β1)XT

i Xi} =

[
I(Ri < ∞)

exp{−G(Si1)}G′(Si1) − exp{−G(Si2)}G′(Si2)
exp{−G(Si1)} − exp{−G(Si2)}

+

I(Ri = ∞)G′(Si1)
]
exp(XT

i β1)XT
i Xi .

Correspondingly for the subjects belonging to C̄, we need to determine

EX {E(Wik)} =

M∑
s=1

q̂isI(Ri < ∞)λk exp(xsTβ1 + ZiTβ2)

×

∫
ξi
ξi{exp(−ξiSis1) − exp(−ξiSis2)}[1 − exp(−ξi(Sis2 − Sis1))]−1f (ξi)dξi

I(Li < tk ≤ Ri) ,
exp{−G(Sis1)} − exp{−G(Sis2)}
7
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t

{

t

EX {E(Wik)Xi} =

M∑
s=1

q̂isI(Ri < ∞)λk exp(xsTβ1 + ZiTβ2)xs

×

∫
ξi
ξi{exp(−ξiSis1) − exp(−ξiSis2)}[1 − exp(−ξi(Sis2 − Sis1))]−1f (ξi)dξi

exp{−G(Sis1)} − exp{−G(Sis2)}
I(Li < tk ≤ Ri) ,

EX {E(ξi) exp(XT
i β1)} =

M∑
s=1

q̂is

{
I(Ri < ∞)

exp{−G(Sis1)}G′(Sis1) − exp{−G(Sis2)}G′(Sis2)
exp{−G(Sis1)} − exp{−G(Sis2)}

+ I(Ri = ∞)G′(Sis1)
}

exp(xTs β1) ,

EX {E(ξi) exp(XT
i β1)Xi} =

M∑
s=1

q̂is

{
I(Ri < ∞)

exp{−G(Sis1)}G′(Sis1) − exp{−G(Sis2)}G′(Sis2)
exp{−G(Sis1)} − exp{−G(Sis2)}

+ I(Ri = ∞)G′(Sis1)
}

exp(xTs β1)xs ,

and

EX {E(ξi) exp(XT
i β1)XT

i Xi} =

M∑
s=1

q̂is

{
I(Ri < ∞)

exp{−G(Sis1)}G′(Sis1) − exp{−G(Sis2)}G′(Sis2)
exp{−G(Sis1)} − exp{−G(Sis2)}

+ I(Ri = ∞)G′(Sis1)
}

exp(xTs β1)xTs xs .

In the above, Si1 =
∑

tk⩽Li
λk exp{Xi

Tβ1 + ZiTβ2}, Si2 =
∑

tk⩽Ri
λk exp{Xi

Tβ1 + ZiTβ2}, Sis1 =
∑

tk⩽Li
λk exp{xsTβ1 + ZiTβ2},

Sis2 =
∑

tk⩽Ri
λk exp{xsTβ1 + ZiTβ2}, and f ′(x) = df (x)/dx for any function f . In particular, if f (ξi) is the gamma density

function with the parameter γ , we have

G′(x) =

∫
ξi
ξi exp(−xξi)f (ξi)dξi

exp{−G(x)}
=

(γ x + 1)−γ
−1

−1

exp{−G(x)}
.

Also to calculate the following type integration∫
ξi

ξi{exp(−ξiSi1) − exp(−ξiSi2)}[1 − exp(−ξi(Si2 − Si1))]−1f (ξi)dξi

hat has no closed-form, we suggest to employ the Gauss–Laguerre quadrature technique.
In the M-step, we need to maximize Q (θ |Oi, θ

(d)) with respect to β1, β2, the λk’s and the psj’s. To update the
psj; j = 1, . . . , n; s = 1, . . . ,M }, one requires to maximize

∑
i∈C

∑M
s=1 I(Xi = xs)wji log psj +

∑
i∈C̄

∑M
s=1 ψ̂sji log psj under

he constraint
∑M

s=1 psj = 1, which gives

psj =

∑
i∈C I(Xi = xs)wji +

∑
i∈C̄ ψ̂sji∑M

s=1{
∑

i∈C I(Xi = xs)wji +
∑

i∈C̄ ψ̂sji}
. (6)

Also for updating the λk’s, one can easily obtain the following closed-form expression

λk =

∑n
i=1 I(tk ⩽ Ri

∗)EX {E(Wik)}∑n
i=1 I(tk ⩽ Ri

∗)EX {E(ξi) exp(Xi
Tβ1)} exp(ZiTβ2)

. (7)

To obtain the updated estimators of β1 and β2, the one-step Newton–Raphson method can be used based on the
following equations

∂Q
∂β1

=

n∑
i=1

m∑
k=1

I(tk ⩽ Ri
∗)

{
EX {E(Wik)Xi}−

EX {E(Wik)}
∑n

i=1 I(tk ⩽ Ri
∗)EX {E(ξi) exp(Xi

Tβ1)Xi} exp(ZiTβ2)∑n I(t ⩽ R ∗)E {E(ξ ) exp(X Tβ )} exp(Z Tβ )

}
= 0 , (8)
i=1 k i X i i 1 i 2

8
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and

∂Q
∂β2

=

n∑
i=1

m∑
k=1

I(tk ⩽ Ri
∗)EX {E(Wik)}

×

{
Zi −

∑n
i=1 I(tk ⩽ Ri

∗)EX {E(ξi) exp(Xi
Tβ1)} exp(ZiTβ2)Zi∑n

i=1 I(tk ⩽ Ri
∗)EX {E(ξi) exp(Xi

Tβ1)} exp(ZiTβ2)

}
= 0 . (9)

For the implementation of the Newton–Raphson method, we need the following functions

∂2Q
∂β2

1
=

n∑
i=1

m∑
k=1

I(tk ⩽ Ri
∗)EX {E(Wik)}

{
(
∑n

i=1 I(tk ⩽ Ri
∗)EX {E(ξi) exp(Xi

Tβ1)Xi} exp(ZiTβ2)∑n
i=1 I(tk ⩽ Ri

∗)EX {E(ξi) exp(Xi
Tβ1)} exp(ZiTβ2)

)2

−

∑n
i=1 I(tk ⩽ Ri

∗)EX {E(ξi) exp(Xi
Tβ1)XT

i Xi} exp(ZiTβ2)∑n
i=1 I(tk ⩽ Ri

∗)EX {E(ξi) exp(Xi
Tβ1)} exp(ZiTβ2)

}
,

∂2Q
∂β2

2
=

n∑
i=1

m∑
k=1

I(tk ⩽ Ri
∗)EX {E(Wik)}

{
(
∑n

i=1 I(tk ⩽ Ri
∗)EX {E(ξi) exp(Xi

Tβ1)} exp(ZiTβ2)Zi∑n
i=1 I(tk ⩽ Ri

∗)EX {E(ξi) exp(Xi
Tβ1)} exp(ZiTβ2)

)2

−

∑n
i=1 I(tk ⩽ Ri

∗)EX {E(ξi) exp(Xi
Tβ1)} exp(ZiTβ2)ZT

i Zi∑n
i=1 I(tk ⩽ Ri

∗)EX {E(ξi) exp(Xi
Tβ1)} exp(ZiTβ2)

}
,

and

∂2Q
∂β1∂β2

=

n∑
i=1

m∑
k=1

I(tk ⩽ Ri
∗)EX {E(Wik)}

{
(
∑n

i=1 I(tk ⩽ Ri
∗)EX {E(ξi) exp(Xi

Tβ1)Xi} exp(ZiTβ2))
(
∑n

i=1 I(tk ⩽ Ri
∗)EX {E(ξi) exp(Xi

Tβ1)} exp(ZiTβ2))

×
(
∑n

i=1 I(tk ⩽ Ri
∗)EX {E(ξi) exp(Xi

Tβ1)} exp(ZiTβ2)Zi)
(
∑n

i=1 I(tk ⩽ Ri
∗)EX {E(ξi) exp(Xi

Tβ1)} exp(ZiTβ2))

−

∑n
i=1 I(tk ⩽ Ri

∗)EX {E(ξi) exp(Xi
Tβ1)Xi} exp(ZiTβ2)Zi∑n

i=1 I(tk ⩽ Ri
∗)EX {E(ξi) exp(Xi

Tβ1)} exp(ZiTβ2)

}
.

In summary, the EM algorithm described above can be summarized as follows.
Step 1. Choose an initial estimate θ (0).
Step 2. At the (d+1)th iteration, first calculate the quantities q̂is and ψ̂sji given in (4) and (5), respectively, and then the con-
ditional expectations EX {E(Wik)Xi}, EX {E(Wik)}, E(ξi), EX {E(ξi) exp(XT

i β1)}, EX {E(ξi) exp(XT
i β1)Xi} and EX {E(ξi) exp(XT

i β1)XT
i

Xi}.
Step 3. Obtain the updated estimates β (d+1)

1 and β (d+1)
2 by solving the score equations (8) and (9) with the use of the

one-step Newton–Raphson method.
Step 4. Obtain the updated estimate λ(d+1)

k from (7).
Step 5. Obtain the updated estimate p(d+1)

sj from (6).
Step 6. Repeat Steps 2–5 until the convergence is achieved.

For the implementation of the EM algorithm above, it is apparent that one needs to choose the initial estimates and
determine the convergence criterion. For the former, we suggest to take some reasonable values as we tried different
values in the numerical study below and the algorithm does not seem to be sensitive to the initial values. For the latter, it
is clear that many criteria can be used and in the numerical study below, we use the summation of the absolute differences
of the consecutive estimates being less than or equal to a constant, taken to be 0.001. Also for the implementation, one
has to choose the bootstrap sample size for variance estimation and based on the experience from the numerical study
below, the size 100 seems to be large enough to give stable results. For a specific example, of course, one could also try
different sizes and compare the results. Also although the EM algorithm may not be fast partly due to the use of the
bootstrap procedure and the need of estimation of α, the numerical study did not seem to have any convergence or other
issues.

5. A simulation study

Now we present some results obtained from a simulation study conducted to assess the performance of the estimation
procedure proposed in the previous sections with the focus on estimation of β . In the study, for covariates, we considered
two situations and in both cases, we assumed that the covariates Zi’s follow the Bernoulli distribution with the success
probability 0.5. In the first situation, we generated the covariates Xi’s from the Bernoulli distribution with the success
probability exp(1−Zi)/(1+exp(1−Zi)), while in the second situation, the Xi’s were generated from the normal distribution
with the mean Zi and variance 1. Given the covariates, the failure times Ti’s were generated from model (1) with
Λ(t) = log(1 + 0.5t) and G(x) = log(1 + γ x)/γ for different values of γ . Note that as mentioned above, it gives the
proportional hazards model with γ = 0 and γ = 1 corresponds to the proportional odds model.
9



M. Du, H. Li and J. Sun Computational Statistics and Data Analysis 157 (2021) 107157

i
b
t
t
o
f
b

o
(
a
t
r
e
a
a

6

I
o
d
f
a
t

Table 1
Simulation results with discrete missing covariates.
Model Method Bias ESE SSE CP

γ = 0 Proposed method 0.0383 0.3370 0.3228 0.9620
0.0704 0.2598 0.2432 0.9690

Complete case 0.0495 0.3567 0.3400 0.9720
0.1139 0.3665 0.3276 0.9780

Full data 0.0184 0.2126 0.2182 0.9540
0.0550 0.2135 0.2104 0.9470

γ = 0.5 Proposed method 0.0194 0.3604 0.3842 0.9440
0.0416 0.2516 0.2861 0.9140

Complete case 0.0225 0.4325 0.3980 0.9700
0.0613 0.4072 0.3951 0.9650

Full data 0.0116 0.2679 0.2593 0.9550
0.0311 0.2633 0.2626 0.9570

γ = 1 Proposed method 0.0322 0.4329 0.4383 0.9460
0.0472 0.3011 0.3260 0.9310

Complete case 0.0519 0.4995 0.4556 0.9750
0.0723 0.4843 0.4507 0.9680

Full data 0.0189 0.3208 0.3132 0.9550
0.0370 0.3136 0.3040 0.9570

For the generation of the censoring intervals defined by the Ui’s and Vi’s, we assumed that the Ui’s follow the uniform
distribution over (0, 3τ/4) and took Vi = min{ 0.1 + Ui + τai/2, τ }, where the ai’s were generated from the exponential
distribution with mean 1. Also here the constant τ was chosen based on the required censoring percentages or proportions
of δ1i, δ2i and δ3i being one. We used the Gaussian kernel with h = 1.5σ̂w1 n

−1/3, where σ̂w1 denotes the sample standard
deviation of the continuous part of the variable W1. Finally we generated the covariate missing indicators ri’s from the
Bernoulli distributions with the probability

πi(α) =
1

1 + exp(α0 + α1Zi + α2Xi)
.

The results given below are based on n = 200 or 300 with 1000 replications.
Tables 1 and 2 present the simulation results obtained on estimation of β1 and β2 of under the two covariate situations,

respectively, with γ = 0, 0.5 and 1, β1 = 0.5, β2 = 1 and (α0, α1, α2) = (0.3,−0.3,−0.2). Here the percentages of left-,
nterval- and right-censored observations are about 50%, 20% and 30%, respectively. The results include the estimated
ias (Bias) given by the average of the estimates minus the true value, the sample standard error of the estimates (SSE),
he average of the estimated standard errors (ESE), and the 95% empirical coverage probability (CP). Here in addition to
he proposed estimation procedure, we also applied the naive complete case approach that performed the analysis based
nly on the subjects with complete covariate information, and the full data approach that assumed no missing covariates
or comparison. One can see that the proposed estimation procedure seems to work well overall with the performance
etween the complete data method and the full data method in all aspects.
Note that under the set-ups considered above, the missing rate (MR) for covariates is 50%. To see its possible effects

n the estimation, we repeated the study giving the results in Table 1 with γ = 0 except (α0, α1, α2) = (−1,−0.1, 1) or
0.4,−0.1, 0.8) and present the simulation results in Table 3. They correspond to the MR being 40% and 70%, respectively,
nd it seems that they gave the same conclusions as above. To see the convergence and the effect of sample sizes on
he estimation of regression parameters, Table 4 gives the estimation results obtained by repeating the study giving the
esults in Table 1 with γ = 0 except n = 300. As expected, the results became better and again indicate that the proposed
stimation procedure works well. We also considered other set-ups, including different observation processes and more
nd different covariates as well as the use of different kernel functions, and obtained similar results. In particular, the
lgorithm and obtained results became stable if n ≥ 200.

. Analysis of Alzheimer’s disease neuroimaging initiative study

In this section, we apply the approach proposed in the previous sections to the Alzheimer’s Disease Neuroimaging
nitiative (ADNI) study described above. As mentioned before, it is a longitudinal study designed to collect the information
n various clinical, imaging and genetic factors as well as biochemical biomarkers that may affect and help the early
etection and tracking of the Alzheimer’s disease (AD). As most of longitudinal studies, the information collection happens
rom time to time and depends on the participant’s follow-ups. Thus it is natural to exist some missing covariates and
lso the observations on most of time-to-events suffer interval censoring. In the study, the participants are classified at

he baseline into three groups based on their cognitive conditions, cognitively normal, mild cognitive impairment and

10
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Table 2
Simulation results with continuous missing covariates.
Model Method Bias ESE SSE CP

γ = 0 Proposed method 0.0462 0.1730 0.1658 0.9440
0.0272 0.2597 0.2410 0.9630

Complete case 0.0599 0.1920 0.1809 0.9580
0.0782 0.3876 0.3479 0.9680

Full data 0.0277 0.1181 0.1178 0.9430
0.0288 0.2274 0.2166 0.9630

γ = 0.5 Proposed method 0.0225 0.2033 0.1977 0.9567
0.0271 0.3180 0.3168 0.9478

Complete case 0.0313 0.2207 0.2072 0.9544
0.0471 0.4478 0.4223 0.9589

Full data 0.0143 0.1409 0.1317 0.9567
0.0206 0.2833 0.2868 0.9489

γ = 1 Proposed method 0.0216 0.2394 0.2436 0.9477
0.0442 0.3801 0.3738 0.9537

Complete case 0.0342 0.2828 0.2575 0.9517
0.0772 0.5750 0.5143 0.9658

Full data 0.0228 0.1637 0.1533 0.9477
0.0251 0.3361 0.3224 0.9618

Table 3
Simulation results with different missing rates.
Model Method Bias SEE SSE CP

MR = 0.4 Proposed method 0.0129 0.2749 0.2628 0.9670
0.0437 0.2324 0.2240 0.9620

Complete case 0.0379 0.2913 0.2782 0.9630
0.0630 0.3006 0.2871 0.9660

Full data 0.0219 0.2121 0.2052 0.9600
0.0417 0.2114 0.2064 0.9570

MR = 0.7 Proposed method 0.0066 0.4321 0.3806 0.9680
0.0605 0.2954 0.2614 0.9750

Complete case 0.0666 0.5036 0.4330 0.9750
0.1742 0.5421 0.4526 0.9790

Full data 0.0186 0.2109 0.1978 0.9680
0.0499 0.2103 0.2083 0.9500

Table 4
Simulation results with n = 300.
Method Bias SEE SSE CP

Proposed method 0.0259 0.2490 0.2407 0.9540
0.0252 0.1898 0.1820 0.9600

Complete case 0.0323 0.2606 0.2513 0.9570
0.0573 0.2609 0.2445 0.9640

Full data 0.0193 0.1664 0.1667 0.9540
0.0217 0.1648 0.1637 0.9490

Alzheimer’s disease, and one failure event of interest is the AD conversion. As described above, due to the nature of the
study and instead of being known exactly, the occurrence time of the conversion is only known to be between the last
observation time when AD had not occurred and the first observation time when the AD had already occurred.

In the analysis below, by following Li et al. (2017), we will consider 371 participants in the mild cognitive impairment
roup with the focus on the time from the baseline visit date to the AD conversion and the association between the
ime and eight covariates. They are the two AD assessment scale test results (ADAS11, ADAS13), middle temporal gyrus
olume (Midtemp), Rey auditoryverbal learning test score of immediate recall (RAVLT.i), and the functional assessment
uestionnaire score (FAQ) along with three baseline covariates Age, Gender and years of education (EDU). Note that Li
t al. (2017) identified the covariates ADAS11, ADAS13, Midtemp, RAVLT.i and FAQ as the most important clinical and
emographic factors associated with the AD conversion based on the individual variable analysis. Among them, about
0% values of the Midtemp are missing and there are no missing for other covariates. Also there seems to exist some
orrelations between all eight covariates.
11
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Table 5
The estimated covariate effects on the AD conversion with γ = 0.
Covariate Proposed CC

Estimate ESE p-value Esimate ESE p-value

Midtemp −0.5882 0.1546 0.0001 −0.6248 0.1185 0.0000
ADAS11 0.0032 0.2920 0.9914 0.3389 0.3182 0.2868
ADAS13 0.5982 0.2982 0.0448 0.3213 0.3268 0.3255
RAVLT.i −0.8406 0.2227 0.0002 −0.7378 0.2403 0.0021
FAQ 0.6382 0.1924 0.0009 0.5812 0.1949 0.0029
Gender −0.1011 0.2360 0.6682 −0.0132 0.2366 0.9556
Age −0.2468 0.2006 0.2185 −0.3914 0.2016 0.0522
EDU −0.0625 0.1889 0.7408 −0.1119 0.1936 0.5633

Table 6
The estimated covariate effects on the AD conversion with γ = 1.
Covariate Proposed CC

Estimate SEE pvalue Esimate SEE p-value

Midtemp −0.6771 0.2210 0.0022 −0.7832 0.1597 0.0000
ADAS11 0.1192 0.3755 0.7509 0.5212 0.3728 0.1621
ADAS13 0.7090 0.3698 0.0552 0.4521 0.3767 0.2301
RAVLT.i −1.1810 0.3086 0.0001 −1.0916 0.3253 0.0008
FAQ 0.9296 0.2739 0.0007 0.8604 0.2873 0.0027
Gender −0.1276 0.3228 0.6927 0.0384 0.3374 0.9094
AGE −0.4190 0.2780 0.1318 −0.7153 0.2957 0.0156
EDU −0.0248 0.2745 0.9280 −0.0730 0.2785 0.7931

Tables 5 and 6 show the estimated covariate effects given by the proposed estimation procedure with the use of the
same G function employed in the previous section and γ = 0 and 1, respectively, and they include the proposed estimates
β̂n, the estimated standard errors and the p-values for testing each regression parameter being zero. Note that the results
with γ = 1 were chosen since it gave the smallest AIC value, while the results with γ = 0 are provided for comparison
nd the fact that γ = 0 corresponds to the Cox model. Here as in the simulation study, we used the Gaussian kernel with
he bandwidth h = 1.5σ̂w1 n

−1/3. In addition, we also applied the complete case approach investigated in the previous
ection and include the obtained estimation results in the tables for comparison.
One can see from the two tables that both proposed and complete data methods gave similar results on the six

ovariates Gender, EDU, ADS11, Midtemp, RAVLT.i and FAQ and suggested that among them, only Midtemp, RAVLT.i and
AQ were significant predictors for the AD conversion. Note that Midtemp, RAVLT.i and FAQ represent some measurements
n the neuroimaging, neuripsychological, and functional and behavioural assessments, respectively, and the results
uggest that the AD conversion was negatively related to Midtemp and RAVLT.i but positively related to FAQ. On the
ovariate Age, the proposed method indicates that it did not seem to have any effect on the AD conversion, while the
omplete case approach suggests some correlation and may overestimate the effect. On the covariate ADAS13, another
easurement on the neuropsychological assessment, the proposed approach suggests that it seems to be positively related

o or a significant predictor for the AD conversion but the complete case approach indicates otherwise.
Note that in contrast to the conclusions above, the individual analyses indicated that both ADAS11, also a measurement

n the neuropsychological assessment, and ADAS13 were strong predictors for the AD conversion (Li et al., 2017). A
ossible reason for this is the strong correlation between ADAS11 and ADAS13. To provide a graphical view about the
nalysis results, Fig. 1 displays the estimated survival function given by the proposed estimation procedure corresponding
o the subject with RAVLT.i less (the bottom curve) or greater (the top curve) than the observed mean value of the covariate
nd other covariates being zero, respectively. Here we took the same G function with γ = 0 as above and the figure again
uggests that RAVLT.i was significantly negatively correlated with the AD conversion.

. Discussion and concluding remarks

This paper discussed regression analysis of interval-censored failure time data, a general type of censored data, arising
rom a class of semiparametric linear transformation models when there exist nonignorable missing covariates. For
nference, a two-step estimating procedure was proposed and the proposed estimators of regression parameters were
hown to be consistent and asymptotically follow the normal distribution. As mentioned above, although there exists
ome literature on the type of problems discussed here, there was no established estimation procedure for the situation
onsidered here and the proposed approach fills a hole in the missing data literature. Furthermore, the numerical studies
uggested that the proposed method seems to work well for practical situations and it should be used in the presence of
onignorable missing covariates.
Note that although the focus above has been on estimation of regression parameters β1 and β2, the proposed estimation

rocedure also gives an estimator of the baseline cumulative hazard function Λ(t). Although we cannot establish the
12
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Fig. 1. The estimated survival functions for the subjects with the covariate RAVLT.i less (the bottom curve) or greater (the top curve) than the
observed mean value.

asymptotic properties of the resulting estimator, the numerical study indicated that the estimator seems to be consistent
and perform well. Also note that for the estimation procedure proposed above, we have assumed that the missing
mechanism for covariates can be described by a known distribution up to a vector of unknown parameters and this
applies to many situations. However, this would not be valid if missing covariates depend on the failure time of interest
and one such example is the case-cohort study.

It is worth to note that the estimation procedure proposed in the previous sections relies on several assumptions
and made use of some techniques or tools. One important assumption is the independent or non-informative interval
censoring, which means that one can perform the analysis or estimation conditional on the observation process.
Sometimes this may not be true, or the follow-up schedule or the observation process may be related to the failure variable
of interest even given covariates (Sun, 2006). That is, we have informative interval censoring, and as many authors pointed
out, there is no method available to check this in general unless there exists some extra information. Also as pointed out
in the literature, in the presence of informative censoring, the use of the methods that assume the independent censoring
would yield biased or misleading results or conclusions. In other words, one needs to develop a different or more general
estimation procedure. In the development above, we have focused on model (1) and although it is quite general and
flexible, sometimes one may still prefer to check its appropriateness. However, it seems that even for relatively simpler
right-censored data, it does not seem to exist an established procedure specifically developed for it.

Of course, another assumption made in the proposed method is about the missing mechanism discussed above and
it is apparent that it would be useful to relax this assumption. On the other hand, as discussed by many authors,
this is a difficult question as the observed information may not be enough to allow the estimation or checking of a
general assumption or model on the nonignorable missing mechanism. In the development of the proposed method,
we introduced the latent variable ξ with the density function f (ξ ) and the Poisson random variable W . For the former,
lthough we have focused on the case of f (ξ ) being the gamma density function, the proposed method is still valid for
ther density function, while for the latter, an EM algorithm can still be developed for the determination of the proposed
stimators but may be different.
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Appendix A. Proofs of the asymptotic properties

In this Appendix, we will sketch the proof for the consistency and asymptotic normality of the proposed estimators
escribed above by employing the empirical process theory and nonparametric techniques. Define Pf =

∫
f (x)dP(x),

nd Pnf = n−1 ∑n
i=1 f (Xi) for a function f , a probability function P and a sample X1, . . . , Xn. For the proof, we need the

ollowing regularity conditions.
(A1) Assume that Λ(τ1) < ∞, Λ(τ2) < ∞, and there exists a positive constant a such that P(V −U > a) > 0. Also the

nion of the supports of U and V is contained in the interval [r1, r2] with 0 < r1 < r2 < +∞.
(A2) The transformation function G is twice continuously differentiable on [0,∞) with G(0) = 0,G′(x) > 0 and

G(∞) = ∞.
(A3) The set of covariates (X, Z) has bounded support.
(A4) The bandwidth h satisfies that h → 0, nhd

→ ∞ and nh2m
→ 0.

(A5) The function Λ0 ∈ M is continuously differentiable up to order r in [r1, r2], with the first derivative being strictly
positive, and satisfies α−1 < Λ0(r1) < Λ0(r2) < α for some positive constant α.

(A6) If g(t) + XT
i β1 + ZT

i β2 = 0 for all t ∈ [r1, r2] with probability 1, then g(t) = 0 for t ∈ [r1, r2], β1 = 0 and β2 = 0.
First we will prove the consistency and for this, we will verify the conditions of Theorem 5.7 of Van Der Vaart (1998).

Let BVω[r1, r2] denote the functions whose total variation in [r1, r2] are bounded by a given constant. Then the class of
functions

Fω =

{∫ Uk

0
exp{XT

i β1 + ZT
i β2}dΛ(s) : Λ ∈ BVω[r1, r2]

}
is a convex hull of functions {I(Uk ⩾ s)exp{XT

i β1 + ZT
i β2}, so it is a Donsker class. Furthermore,

exp
(

−G
[∫ Uk

0
exp{XT

i β1 + ZT
i }dΛ(s)

])
− exp

(
−G

[∫ Uk+1

0
exp{XT

i β1 + ZT
i }dΛ(s)

])
is bounded away from zero. Therefore, l(θ, α̂|O) = log L(θ, α̂|O) belongs to some Donsker class due to the preservation
property of the Donsker class under Lipschitz-continuous transformations. Then we can conclude that supθ∈Θn |Pnl(θ, α̂|O)−
Pnl(θ0, α̂|O)| converges in probability to 0 as n → 0.

Now we verify that another condition of Theorem 5.7 of Van Der Vaart (1998) also holds. That is, for any ε > 0, we
have

sup
d(θ,θ0)>ε

Pl(θ, α̂|O) < Pl(θ0, α̂|O) .

Note that this condition is satisfied if we can prove the model is identifiable. According to condition (A6) and similar
arguments to the proof of Theorem 2.1 of Chang et al. (2007), we can show the identifiability of the model parameters.
Now, by Theorem 5.7 of Van Der Vaart (1998), we have d(θ̂n, θ0) = op(1), which completes the proof of consistency.

Before proving the asymptotic normality, we will need to establish the convergence rate. For this, we will first define
the covering number of the class L = {l(θ, α̂|O) : θ ∈ Θ} and establish a needed lemma.

Lemma 1. Assume that Conditions (A1), (A3)–(A6) hold. Then the covering number of the class L = {l(θ, α̂|O) : θ ∈ Θ}

satisfies

N(ϵ,L, L2(P)) = O(ϵ−1).

Proof of Lemma 1. The proof is similar to that of Zeng et al. (2016) and Hu et al. (2017) and thus omitted.

To establish the convergence rate, for any η > 0, define the class Fη = {l(θn0, α̂|O) − l(θ, α̂|O) : θ ∈ Θ, d(θ, θn0) ⩽ η}
with θn0 = (β0,Λn0). Following the calculation of Shen and Wong (1994, P.597), we can establish that logN[](ϵ,Fη, ∥ . ∥2
) ⩽ CN log(η/ϵ) with N = m + 1, where N[](ϵ,Fη, d) denotes the bracketing number (see the Definition 2.1.6 in Van der
Vaart and Wellner, 1996 with respect to the metric or semi-metric d of a function class F . Moreover, some algebraic
calculations lead to ∥ l(θn0, α̂|O) − l(θ, α̂|O) ∥

2
2⩽ Cη2 for any l(θn0, α̂|O) − l(θ, α̂|O) ∈ Fη . Therefore, by Lemma 3.4.2 of

Van der Vaart and Wellner (1996), we obtain

Ep ∥ n1/2(Pn − P) ∥Fη⩽ CJη(ϵ,Fη, ∥ . ∥2){1 +
Jη(ϵ,Fη, ∥ . ∥2)

η2n1/2 }, (S)

where J[](η,Fη, ∥ . ∥2) =
∫ η
0 {logN[](ϵ,Fη, ∥ . ∥2)}1/2dϵ. The right-hand side of (S) yields φn(η) = Cη1/2(1+

η1/2

η2n1/2
M1), where

1 is a positive constant. Then φn(η)/η is a decreasing function, and n2/3φn(−1/3) = O(n1/2). According the theorem 3.4.1
f Van der Vaart and Wellner (1996), we can conclude that d(θ̂ , θ0) = Op(n−1/3).
Now we prove the asymptotic normality of β̂n. Following the proof of Theorem 2 in Zeng et al. (2016), one can obtain

hat
√
n(β̂ − β ) = (E{l − l (s∗)}{l − l (s∗)}T )−1G {l − l (s∗)} + o (1),
n 0 β Λ β Λ n β Λ p

14
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where lβ is the score function for β , lΛ(s∗) is the score function along this submodel dΛϵ,s∗ = (1 + ϵs∗)dΛ. This implies
hat the influence function for β̂n is exactly the efficient influence function, so that

√
n(β̂n −β0) converges to a zero-mean

ormal random vector whose covariance matrix attains the semiparametric efficiency bound (Bickel et al., 1993, p. 65).
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